Examen Analyse 2012-13

Datum : 08-02-2013

Tijd : 09.00 - 12.00, 5118.-156

You need to clearly provide arguments for all your answers; 'yes' or 'no' answers are not allowed.

Grading scheme: Total number of points: 100. Free: 10. Number of points is specified after each question.

- 1. (a) Let $A \subseteq \mathbb{R}$ and $f: A \to \mathbb{R}$ uniformly continuous on A, that is, for every $\epsilon > 0$ there exists $\delta > 0$ such that for all $x, y \in A$ with $|x y| < \delta$ we have $|f(x) f(y)| < \epsilon$. Suppose that $(x_n) \subseteq A$ is a Cauchy sequence. Prove that $f(x_n)$ is a Cauchy sequence. (10 points)
 - (b) Is the statement of the previous question still true if the assumption of uniform continuity is replaced with continuity? Give a proof or counterexample to support your claim. (5 points)
- 2. (a) Let Λ be an indexing set (that is, its elements are subscripts), and suppose that for each $\lambda \in \Lambda$ the set $E_{\lambda} \subseteq \mathbb{R}$ is closed.

 Using just the definition of a closed set, prove that the intersection

$$E = \bigcap_{\lambda \in \Lambda} E_{\lambda}$$

is closed as well. (5 points)

(b) Let E_1, E_2, \ldots, E_m be a finite collection of closed subsets of \mathbb{R} . Using just the definition of a closed set, prove that the finite union

$$E = \bigcup_{i=1}^{m} E_i$$

is closed as well. (5 points)

- (c) Is the infinite union of closed sets necessarily closed? Give a proof or counter-example to support your claim. (5 points)
- 3. Let $A \subseteq \mathbb{R}$ and for $n \in \mathbb{N}$ let $f_n : A \to \mathbb{R}$. Suppose that each f_n is bounded on A and that (f_n) converges uniformly to some function $f : A \to \mathbb{R}$ on A.
 - (a) Show that f is bounded on A. (5 points)
 - (b) Show that (f_n) is uniformly bounded on A. That is, there exists M > 0 such that $|f_n(x)| \leq M$ for all $x \in A$ and $n \in \mathbb{N}$. (10 points)
- 4. For each of the following sequences of functions (f_n) , find the pointwise limit on the given set A, and determine wether the convergence is uniform on A. Provide your claims with rigorous argumentation.

1

(a)
$$f_n(x) = x^{2n}$$
, $A = [-1, 1]$. (5 points)

(b)
$$f_n(x) = \frac{\arctan(nx)}{n(x^2+1)}$$
, $A = \mathbb{R}$. (5 points)

(c)
$$f_n(x) = \frac{1}{n} \log(x+1)$$
, $A = [0, \infty)$. (5 points)

5. Let $f:[0,1]\to\mathbb{R}$ be defined as

$$f(x) = \sum_{n=1}^{\infty} \frac{x^n \sin(n\pi x)}{n^2}$$

- (a) Show that f is continuous on [0,1]. (7 points)
- (b) Show that f is differentiable on [0,1). (8 points) Hint: consider an arbitrary point $x_0 \in [0,1)$.
- 6. Let $f:[0,1]\to\mathbb{R}$ be defined as

$$f(x) = \begin{cases} 1 & \text{if } x = \frac{1}{n} \text{ for some } n \in \mathbb{N} \\ 0 & \text{otherwise} \end{cases}$$

- (a) Show that for any partition P of the interval [0,1] we have L(f,P)=0. (4 points)
- (b) For a given $\epsilon > 0$, construct a partition P_{ϵ} of [0,1] such that $U(f,P_{\epsilon}) < \epsilon$. (8 **points**)

 Hint: how much discontinuities does f have on the interval $[\frac{\epsilon}{2},1]$?
- (c) Show that f is integrable on [0,1] with $\int_0^1 f = 0$. (3 points)